- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Amos, E. (1)
-
Behnke, M. I. (1)
-
Burns, A J (1)
-
Eglinton, T. I. (1)
-
Gurtovaya, T. (1)
-
Haghipour, N. (1)
-
Hernes, P J (1)
-
Holmes, R. M. (1)
-
Kaiser, K (1)
-
Kellerman, A M (1)
-
Kellerman, A. M. (1)
-
Leonard, L (1)
-
Mannino, A (1)
-
McClelland, J. W. (1)
-
Mutter, E. A. (1)
-
Raymond, P. A. (1)
-
Spencer, R. G. M. (1)
-
Spencer, R_G M (1)
-
Suslova, A. (1)
-
Tank, S. E. (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Arctic amplification is leading to increased terrestrial organic carbon (terrOC) mobilization with downstream impacts on riverine and marine biogeochemistry. To improve quantification and characterization of terrOC discharged to the Arctic Ocean, Yukon River delta samples were collected during three stages of the annual hydrograph (ascending limb/peak freshet, descending limb, late summer) and across a land‐to‐ocean salinity gradient (0.08–29.06 ppt). All samples were analyzed for dissolved organic carbon (DOC) concentration and lignin phenols to determine seasonal variability in riverine terrOC and salinity‐induced transformation of highly aromatic terrestrial compounds. Additionally, the relationship between lignin and absorbance at 350 and 412 nm was assessed to determine the feasibility of using optical proxies for accurate quantification, both seasonally and across expansive salinity gradients. Lignin phenols were highest during the ascending limb/peak freshet (0.58–0.97 mg/100 mg OC) when riverine DOC was dominated by young vascular plant sources, whereas lignin phenols were lower (0.15–0.89 mg/100 mg OC) and riverine DOC more variable in terrestrial source and diagenetic state during the descending limb and late summer. Across the sampled salinity gradient, there was disproportionate depletion of lignin (up to 73%) compared to DOC (up to 22%). Finally, while optical proxies can be used to quantify lignin within seasonal or spatial contexts, increased uncertainty is likely when expanding linear correlations across Arctic land‐ocean continuums. Overall, results indicate seasonal, spatial, interannual, and climatic controls that are amplified during high‐flow conditions and important to constrain when investigating Arctic terrOC cycling and land‐ocean DOC flux.more » « less
-
Behnke, M. I.; McClelland, J. W.; Tank, S. E.; Kellerman, A. M.; Holmes, R. M.; Haghipour, N.; Eglinton, T. I.; Raymond, P. A.; Suslova, A.; Zhulidov, A. V.; et al (, Global Biogeochemical Cycles)Abstract Climate change is dramatically altering Arctic ecosystems, leading to shifts in the sources, composition, and eventual fate of riverine dissolved organic matter (DOM) in the Arctic Ocean. Here we examine a 6‐year DOM compositional record from the six major Arctic rivers using Fourier‐transform ion cyclotron resonance mass spectrometry paired with dissolved organic carbon isotope data (Δ14C, δ13C) to investigate how seasonality and permafrost influence DOM, and how DOM export may change with warming. Across the pan‐Arctic, DOM molecular composition demonstrates synchrony and stability. Spring freshet brings recently leached terrestrial DOM with a latent high‐energy and potentially bioavailable subsidy, reconciling the historical paradox between freshet DOM's terrestrial bulk signatures and high biolability. Winter features undiluted baseflow DOM sourced from old, microbially degraded groundwater DOM. A stable core Arctic riverine fingerprint (CARF) is present in all samples and may contribute to the potential carbon sink of persistent, aged DOM in the global ocean. Future warming may lead to shifting sources of DOM and export through: (1) flattening Arctic hydrographs and earlier melt modifying the timing and role of the spring high‐energy subsidy; (2) increasing groundwater discharge resulting in a greater fraction of DOM export to the ocean occurring as stable and aged molecules; and (3) increasing contribution of nitrogen/sulfur‐containing DOM from microbial degradation caused by increased connectivity between groundwater and surface waters due to permafrost thaw. Our findings suggest the ubiquitous CARF (which may contribute to oceanic carbon sequestration) underlies predictable variations in riverine DOM composition caused by seasonality and permafrost extent.more » « less
An official website of the United States government
